Reportar fallo

Polinomios de Taylor

$ n$-degree Taylor polynomial for the function $ f(x)$ around $ x=x_0$\[\begin{align*} T_n(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\frac{f'''(x_0)}{3!}(x-x_0)^3+\cdots\\&+\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i+\cdots \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \end{align*}\]

Problema

Find $ 1 $-degree Taylor polynomial for function $ f(x)= {{ \ln \left(x+1\right)}\over{x+1}} $ in $ x_0=0$.

Function and value of the function

$ f(x)= {{ \ln \left(x+1\right)}\over{x+1}} $,      $ f(0)= 0 $

Derivatives, derivatives at $0$ and coefficients of Taylor polynomial

$ i$$f^{(i)}(x)$$f^{(i)}(x_0)$$\frac{f^{(i)}(x_0)}{i!}$
1$ -{{\ln \left( x+1\right)-1}\over{\left(x+1\right)^2}} $$ 1 $$ 1 $

Polinomios de Taylor

$ T_{1}(x)= +x $