Reportar fallo

## Polinomios de Taylor

$n$-degree Taylor polynomial for the function $f(x)$ around $x=x_0$\begin{align*} T_n(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\frac{f'''(x_0)}{3!}(x-x_0)^3+\cdots\\&+\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i+\cdots \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \end{align*}

#### Problema

Find $4$-degree Taylor polynomial for function $f(x)= \sin \left(5{}x\right)$ in $x_0=114.592$.

#### Function and value of the function

$f(x)= \sin \left(5{}x\right)$,      $f(114.592)= 0.92841989327408$

#### Derivatives, derivatives at $114.592$ and coefficients of Taylor polynomial

$i$$f^{(i)}(x)$$f^{(i)}(x_0)$$\frac{f^{(i)}(x_0)}{i!} 1 5{}\cos \left(5{}x\right)$$ 1.857663194533349 $$1.857663194533349 2 -25{}\sin \left(5{}x\right)$$ -23.21049733185189 $$- 11.60524866592595 3 -125{}\cos \left(5{}x\right)$$ - 46.44157986333373 $$-7.740263310555622 4 625{}\sin \left(5{}x\right)$$ 580.2624332962973$$24.17760138734572$

#### Polinomios de Taylor

$T_{4}(x)= \sin \left({{14324}\over{ 25}}\right)+5{}\cos \left({{14324}\over{25}}\right){}\left(x-114.592 \right)-{{1}\over{2}}{}\left(25{}\sin \left({{14324}\over{25}} \right)\right){}\left(x-114.592\right)^2-{{1}\over{6}}{}\left(125{} \cos \left({{14324}\over{25}}\right)\right){}\left(x-114.592\right)^ 3+{{1}\over{24}}{}\left(625{}\sin \left({{14324}\over{25}}\right) \right){}\left(x-114.592\right)^4$