Reportar fallo

Polinomios de Taylor

$ n$-degree Taylor polynomial for the function $ f(x)$ around $ x=x_0$\[\begin{align*} T_n(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\frac{f'''(x_0)}{3!}(x-x_0)^3+\cdots\\&+\frac{f^{(i)}(x_0)}{i!}(x-x_0)^i+\cdots \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \end{align*}\]

Problema

Find $ 3 $-degree Taylor polynomial for function $ f(x)= \ln \left(x+1\right) $ in $ x_0=0$.

Function and value of the function

$ f(x)= \ln \left(x+1\right) $,      $ f(0)= 0 $

Derivatives, derivatives at $0$ and coefficients of Taylor polynomial

$ i$$f^{(i)}(x)$$f^{(i)}(x_0)$$\frac{f^{(i)}(x_0)}{i!}$
1$ {{1}\over{x+1}} $$ 1 $$ 1 $
2$ - {{1}\over{\left(x+1\right)^2}} $$ -1 $$ -{{1}\over{2}} $
3$ {{2}\over{ \left(x+1\right)^3}} $$ 2 $$ {{1}\over{3}} $

Polinomios de Taylor

$ T_{3}(x)= x-{{1}\over{2}}{}x^2+{{1 }\over{3}}{}x^3 $